quinta-feira, 30 de janeiro de 2014

Simulado do MEC - matemática

Questão 1:
Com o objetivo de trabalhar com seus alunos o conceito de volume de sólidos, um professor fez o seguinte experimento: pegou uma caixa de polietileno, na forma de um cubo com 1 metro de lado, e colocou nela 600 litros de água. Em seguida, colocou, dentro da caixa com água, um sólido que ficou completamente submerso. Considerando que, ao colocar o sólido dentro da caixa, a altura do nível da água passou a ser 80
cm, qual era o volume do sólido?

Questão 7 - Simulado do MEC


“Quatro, três, dois, um... Vá!” O relógio marcava 9h32min (4h32min em Brasília) na sala de comando da Organização Européia de Pesquisa Nuclear (CERN), na fronteira da Suíça com a França, quando o narrador anunciou o surgimento de um flash branco nos dois telões. Era sinal de que o experimento científico mais caro e mais complexo da humanidade tinha dado seus primeiros passos rumo à simulação do Big Bang, a grande explosão que originou o universo. A plateia, formada por jornalistas e cientistas, comemorou com aplausos assim que o primeiro feixe de prótons foi injetado no interior do Grande Colisor de Hadrons (LHC – Large Hadrons Collider), um túnel de 27 km de circunferência construído a 100 m de profundidade. Duas horas depois, o segundo feixe foi lançado, em sentido contrário. Os feixes vão atingir velocidade próxima à da luz e, então, colidirão um com o outro. Essa colisão poderá ajudar a decifrar mistérios do universo.

CRAVEIRO, R. "Máquina do Big Bang" é ligada. Correio Braziliense, Brasília, 11 set. 2008, p. 34. (com adaptações).
Segundo o texto, o experimento no LHC fornecerá dados que possibilitarão decifrar os mistérios do universo. Para analisar esses dados provenientes das colisões no LHC, os pesquisadores utilizarão os princípios de transformação da energia. Sabendo desses princípios, pode-se afirmar que

(A) as colisões podem ser elásticas ou inelásticas e, em ambos os casos, a energia cinética total se dissipa na colisão.


(B) a energia dos aceleradores é proveniente da energia liberada nas reações químicas no feixe injetado no interior do Grande Colisor.


(C) o feixe de partículas adquire energia cinética proveniente das transformações de energia ocorridas na interação do feixe com os aceleradores.


(D) os aceleradores produzem campos magnéticos que não interagem com o feixe, já que a energia preponderante das partículas no feixe é a energia potencial.


(E) a velocidade das partículas do feixe é irrelevante nos processos de transferência de energia nas colisões, sendo a massa das partículas o fator preponderante.

Questão 4 - Simulado do MEC


A nanotecnologia está ligada à manipulação da matéria em escala nanométrica, ou seja, uma escala tão pequena quanto a de um bilionésimo do metro. Quando aplicada às ciências da vida, recebe o nome de nanobiotecnologia. No fantástico mundo da nanobiotecnologia, será possível a invenção de dispositivos ultrapequenos que, usando conhecimentos da biologia e da engenharia, permitirão examinar, manipular ou imitar os sistemas biológicos.

LACAVA, Z.; MORAIS, P. Nanobiotecnologia e saúde. Com Ciência. Reportagens. Nanociência & Nanotecnologia. Disponível em: . Acesso em: 4 maio 2009.

Questão 1 - Simulado do MEC


Um dos modelos usados na caracterização dos sons ouvidos pelo ser humano baseia-se na hipótese de que ele funciona como um tubo ressonante. Neste caso, os sons externos produzem uma variação de pressão do ar no interior do canal auditivo, fazendo a membrana (tímpano) vibrar. Esse modelo pressupõe que o sistema funciona de forma equivalente à propagação de ondas sonoras em tubos com uma das extremidades fechadas pelo tímpano. As frequências que apresentam ressonância com o canal auditivo têm sua intensidade reforçada, enquanto outras podem ter sua intensidade atenuada.
Considere que, no caso de ressonância, ocorra um nó sobre o tímpano e ocorra um ventre da onda na saída do canal auditivo, de comprimento L igual a 3,4 cm. Assumindo que a velocidade do som no ar (v) é igual a 340 m/s, a frequência do primeiro harmônico (frequência fundamental, n = 1) que se formaria no canal, ou seja, a frequência mais baixa que seria reforçada por uma ressonância no canal auditivo, usando este modelo é
(A) 0,025 kHz, valor que considera a frequência do primeiro harmônico como igual a nv/4L e equipara o ouvido a um tubo com ambas as extremidades abertas.
(B) 2,5 kHz, valor que considera a frequência do primeiro harmônico como igual a nv/4L e equipara o ouvido a um tubo com uma extremidade fechada.
(C) 10 kHz, valor que considera a frequência do primeiro harmônico como igual a nv/L e equipara o ouvido a um tubo com ambas as extremidades fechadas.
(D) 2.500 kHz, valor que expressa a frequência do primeiro harmônico como igual a nv/L, aplicável ao ouvido humano. (E) 10.000 kHz, valor que expressa a frequência do primeiro harmônico como igual a nv/L, aplicável ao ouvido e a tubo aberto e fechado.