Pular para o conteúdo principal

Inequações



Malba Tahan Nerd (Profº Malba Tahan ®): Inequações:






Inequações



matemática
funções




Inequações






Por Thiago Salvador


Professor de Matemática do Colégio Qi


INTRODUÇÃO






Ao longo do módulo, o estudo de inequações - que caem no Enem - será dividido em algumas partes. Relembraremos os símbolos de comparação e também abordaremos os diversos tipos através de alguma reflexão e elaboração de exercícios. Por fim, mostraremos como resolver a inequação quando há uma composição de funções.




Simbologia




Escolha um número qualquer, por exemplo, o cinco. Assim, marcando-o na reta numérica teremos o desenho:







Quais são os números a direita do 5? Temos, por exemplo, o 5,23, ou 6, ou 7,943, ou 8,11 etc. Esses números possuem algo em comum, todos são maiores que o próprio 5. Então escrevemos: 5 ≤ 5,23 , 6 > 5 , 5 < 7,943 e 8,11≤ 5. Repare que o “bico” do símbolo sempre está apontado para o menor número.




Outra dúvida: o que é esse traço embaixo do símbolo de “<” ou “>”? Ele é o símbolo de igual. Assim, quando escrevemos 8,11 ≥ 5 dizemos que o 8,11 é maior ou igual ao 5. Nesse caso, o 8,11 é maior. No entanto, poderíamos escrever sem problemas: 5 ≤ 5, pois 5 é igual ao 5 . Mas nunca 5 < 5, visto que 5 não é menor que ele mesmo.




Lembre-se: esses símbolos de “<”, “>”, “≤” e “≥” são símbolos feitos para comparação. E é isso determina a própria definição de inequação: descobrir números que satisfaçam essas comparações.






INEQUAÇÕES E SUAS RESOLUÇÕES


Resolva as inequações:




a) x – 5 > 9




A pergunta que está sendo feita é: quais são os valores que retirados 5 unidades ficam maiores que 9? Para isso acontecer, esses números devem ser maiores que 14. Pois, 14 – 5 = 9. Assim, nossa resposta é x > 14. Mas qual é a relação entre o 5 com o 9 que resulta em 14? Basta somá-los. Então, no fundo, resolver uma inequação como essa não é tão diferente de resolver uma equação. Vejamos outro exemplo.






b) 2x + 6 < 30




Para 2x + 6 ser menor que trinta, basta que o 2x seja menor que 24 (30-6). Assim, x deve ser menor que 12. Resposta x menor que 12. Ou em outros termos:




2x < 30 – 6
2x < 24
x < 24/2
Resposta: x < 12






c) 15 – x < 12
-x < 12 - 15
-x < -3




Vamos refletir um pouco como ficará nossa resposta. Quais são os números que ao trocar de sinal ficam menores que -3? O 4, ou o 2, ou o 765,43. Ou seja, são números maiores que o três. Assim nossa resposta final é: x > 3. Então a dica aqui é: caso o x fique negativo, troque o sentido do sinal. Vejamos outro exemplo:






d) -3x + 14 -95
-3x -95 - 14
-3x -109-x < -3
x ≥−109−3




Resposta: x ≥1093






e) 105−15x>1




105−15x>100




5 - 15x >0
-15x > -5
x < 1/3
Resposta: x <1 br="">





f) log3 (2x-10) > 4




2x – 10 > 34
2x – 10 > 81
2x > 81 + 10
2x > 91
x > 91/2




Além disso, lembre-se que 2x – 10 > 0. Ou 2x > 10. x > 10/2 . x > 5. Como 91/2 é maior que 5, então nossa resposta final será x > 91/2.






g) |3x - 18| ≥ 27




Para que o módulo tenha valor maior que 27, basta 3x -18 seja maior que 27 ou que 3x – 18 seja menor que -27. Então teremos:







R: 7/4 < x < 17/4






i) cos(2x – 6) > 12




Pergunte-se: qual ângulo tem cosseno igual a 1/2? 60º ou em radianos, π/3. Com o auxílio do ciclo trigonométrico, é fácil ver que os ângulos maiores que π/3 e menores que 5π/3 satisfazem a condição. Assim como todas as suas voltas completas. Portanto:









Composição de Funções




j) (2x−8)(5−10x)(x+9)(20−4x) > 0




Veja que a fração deve ser maior que zero, ou seja, o sinal da fração é positivo. Assim, tanto o numerador como o denominador devem ter o mesmo sinal. Para isso, vamos os sinais de cada função e em seguida delimitar os resultados que nos interessam:




2x-8:
para ser positivo: 2x -8 > 0 , então 2x > 8, x > 4
para ser negativo: 2x – 8 < 0, então 2x < 8 e x < 4


5-10x:
para ser positivo: 5 – 10x > 0 , então -10x > -5, x < 1/2
para ser negativo: x > ½


x+9:
para ser positivo: x + 9 > 0 , então x > -9
para ser negativo: x < -9


20-4x:
para ser positivo: 20 - 4x > 0 , então -4x > -20, x < 5
para ser negativo: x > 5


Note que para o numerador e denominador terem o mesmo sinal é porque todas as funções são positivas. Ou que 2x -8 e 20 – 4x sejam negativa e as restantes positivas. Ou ainda, 5-10x e x+9 negativas e todas positivas. Ou seja, existem muitas possibilidades e para melhorar o entendimento, vamos montar um quadro de todas essas:

2x-8 5-10x x+9 20-4x Fração
+ + + + +
+ - - + +
+ - + - +
- - - - +
- - + + +
- + - + +
- + + - +

Mas essas combinações só podem acontecer nos intervalos que analisamos anteriormente:

2x-8 5-10x x+9 20-4x Fração
x > 4 x < 1/2 x > -9 x < 5 Não existe!
x > 4 x > 1/2 x < -9 x < 5 Não existe!
x > 4 x > 1/2 x > -9 x > 5 x > 5
x < 4 x > 1/2 x < -9 x > 5 Não existe!
x < 4 x > 1/2 x > -9 x < 5 ½ < x < 4
x < 4 x < 1/2 x < -9 x < 5 x < -9
x < 4 x < 1/2 x > -9 x > 5 Não existe!

Repare que a segunda linha não existe, pois não existe número maior que 4 e menor que -9. As outras linhas que não existem também possuem explicações muito parecidas.

Assim, nossa resposta é x < -9 ou ½ < x < 4 ou x > 5. Ou ainda, (-


, - 9) U (1/24) U (5,+


)
EXERCÍCIO

(CMB) Qual o menor valor inteiro que satisfaz a desigualdade apresentada a seguir?
9x + 2(3x − 4) > 11x − 14

(A) −2
(B) −1
(C) 0
(D) 1
(E) 2


Solução
Basta resolver a inequação:
9x + 6x -8 > 11x -14
9x + 6x -11x > +8 -14
4x > -6
x > -6/4
x > -1,5

Olhando as respostas e sabendo que x deve ser o menor inteiro que -1,5, segue que x vale -1. Resposta: B








http://educacao.globo.com/matematica/assunto/funcoes/inequacoes.html

Postagens mais visitadas deste blog

Canções para TFM

DEMÔNIOS CAMUFLADOS DEMÔNIOS CAMUFLADOS VÃO SAIR DA ESCURIDÃO,
SENTINELA ENSANGUENTADO VAI ROLANDO PELO CHÃO,
E PERGUNTEM DE ONDE VENHO, VENHO DA ESCURIDÃO,
TRAGO A MORTE, O DESESPERO E A TOTAL DESTRUIÇÃO.
ARMADILHAS CAMUFLADAS, ACIONADORES DE TRAÇÃO,
QUEM VIER ATRAS DE MIM SÓ VAI OUVIR A EXPLOSÃO(CABUM)
SANGUE FRIO EM MINHAS VEIAS CONGELOU MEU CORAÇÃO
NÓS GOSTAMOS DE EXPLOSIVOS NOSSO LEMA É VIBRAÇÃO.
QUEM ÉS TU? QUEM ÉS TU?
QUE DESCE DO CÉU!
COM ASAS DE PRATA POR SOBE O BRASIL!
GUERREIRO ALADO, QUE NÃO SENTE DOR!
PARAQUEDISTA, COMANF, MERGULHADOR!
A SUA MISSÃO É DESTRUIR
A TROPA INIMIGA QUE TENTA INVADIR

CORRIDINHA MIXURUCA CORRIDINHA MIXURUCA,
QUE NÃO DÁ NEM PARA CANÇAR.
NESSE PASSO, NESSE PASSO,
VOLTA AO MUNDO EU VOU DAR.
NESSE PASSO, NESSE PASSO
TODOS JUNTOS VÃO CHEGAR.
E SE ALGUÉM NÃO AGUENTAR,
EU VOU TER QUE ARRASTAR.
E SE O ARRASTO ME MATAR, PODES CRER TU VAI FICA
VAI FICAR NA MÃO DE OUTRO – ATÉ EU ME RECUPERAR.
POIS NESSE PASSO, NESSE PASSO,
MESMO MORTO VOU TE BUSCAR.




SALTITANDO, SALTI…

Canções Militares para o TFM.

Essas canções são usadas durante o Treinamento Físico Militar nas Forças Armadas, das Polícias Militares e Corpos de Bombeiros Militares.
Demônios Camuflados Demônios camuflados vão sair da escuridão,
sentinela ensanguentado vai rolando pelo chão,
e perguntem de onde venho, venho da escuridão,
trago a morte, o desespero e a total destruição.
Armadilhas camufladas, acionadores de tração,
Quem vier atras de mim só vai ouvir a explosão(Cabum)
Sangue frio em minhas veias congelou meu coração
Nós gostamos de explosivos nosso lema é vibração.
Quem és Tu? Quem és tu?
Que desce do céu!
Com asas de prata por sobe o Brasil!
Guerreiro alado, que não sente dor!
Paraquedista, Comanf, Mergulhador!
A sua missão é destruir
A tropa inimiga que tenta invadir

Corridinha Mixuruca Corridinha mixuruca,
que não dá nem para cançar.
Nesse passo, nesse passo,
Volta ao mundo eu vou dar.
Nesse passo, nesse passo
Todos juntos vão chegar.
E se alguém não aguentar,
Eu vou ter que arrastar.
E se o arrasto me matar, podes c…

Termodinâmica

Termodinâmica