Derivadas
A derivada de uma função y = f(x), pode ser representada também pelos símbolos:
A derivada de uma função f(x) no ponto x0 é dada por:
Algumas derivadas básicas
Nas fórmulas abaixo, u e v são funções da variável x.
a, b, c e n são constantes.
Derivada de uma constante
Derivada da potência
Portanto:
Soma / Subtração
Produto por uma constante
Derivada do produto
Derivada da divisão
Potência de uma função
Derivada de uma função composta
Próximo tópico: REGRA DA CADEIA
http://www.somatematica.com.br/superior/derivada.php
Derivadas
A fórmula:
é conhecida como regra da cadeia. Ela pode ser escrita como:
Outra fórmula similar é a seguinte:
Derivada da função inversa
A inversa da função y(x) é a função x(y):
http://www.somatematica.com.br/superior/derivada2.php
Derivadas de funções trigonométricas e suas inversas
http://www.somatematica.com.br/superior/derivada3.php
Derivadas de funções exponencial e logarítmica
Derivada do logaritmo natural
Derivada do logaritmo
em outras bases
Exponencial
Lembre-se da definição da função logarítmica com base a > 0:
http://www.somatematica.com.br/superior/derivada4.php
Derivadas das funções hiperbólicas e suas inversas
Lembre-se das definições das funções trigonométricas:
http://www.somatematica.com.br/superior/derivada5.php
Derivadas de alta ordem
Seja y = f(x). Temos:
A segunda derivada é dada por:
A enésima derivada é dada por:
Em alguns livros, a seguinte notação também é usada:
http://www.somatematica.com.br/superior/derivada6.php
ORIGEM DO CONCEITO DE
DERIVADA DE UMA FUNÇÃO
O conceito de função que hoje pode parecer simples, é o resultado de uma lenta e longa evolução histórica iniciada na Antiguidade quando, por exemplo, os matemáticos Babilónios utilizaram tabelas de quadrados e de raízes quadradas e cúbicas ou quando os Pitagóricos tentaram relacionar a altura do som emitido por cordas submetidas à mesma tensão com o seu comprimento. Nesta época o conceito de função não estava claramente definido: as relações entre as variáveis surgiam de forma implícita e eram descritas verbalmente ou por um gráfico.
Só no séc. XVII, quando Descartes e Pierre Fermat introduziram as coordenadas cartesianas, se tornou possível transformar problemas geométricos em problemas algébricos e estudar analiticamente funções. A Matemática recebe assim um grande impulso, nomeadamente na sua aplicabilidade a outras ciências - os cientistas passam, a partir de observações ou experiências realizadas, a procurar determinar a fórmula ou função que relaciona as variáveis em estudo. A partir daqui todo o estudo se desenvolve em torno das propriedades de tais funções. Por outro lado, a introdução de coordenadas, além de facilitar o estudo de curvas já conhecidas permitiu a "criação" de novas curvas, imagens geométricas de funções definidas por relacões entre variáveis.
Foi enquanto se dedicava ao estudo de algumas destas funções que Fermat deu conta das limitações do conceito clássico de reta tangente a uma curva como sendo aquela que encontrava a curva num único ponto. Tornou-se assim importante reformular tal conceito e encontrar um processo de traçar uma tangente a um gráfico num dado ponto - esta dificuldade ficou conhecida na História da Matemática como o " Problema da Tangente".
Fermat resolveu esta dificuldade de uma maneira muito simples: para determinar uma tangente a uma curva num ponto P considerou outro ponto Q sobre a curva; considerou a reta PQ secante à curva. Seguidamente fez deslizar Q ao longo da curva em direcção a P, obtendo deste modo retas PQ que se aproximavam duma reta t a que Fermat chamou a reta tangente à curva no ponto P.
Fermat notou que para certas funções, nos pontos onde a curva assumia valores extremos, a tangente ao gráfico devia ser uma reta horizontal, já que ao comparar o valor assumido pela função num desses pontos P(x, f(x)) com o valor assumido no outro ponto Q(x+E, f(x+E)) próximo de P, a diferença entre f(x+E) e f(x) era muito pequena, quase nula, quando comparada com o valor de E, diferença das abcissas de Q e P. Assim, o problema de determinar extremos e de determinar tangentes a curvas passam a estar intimamente relacionados.
Estas ideias constituiram o embrião do conceito de DERIVADA e levou Laplace a considerar Fermat "o verdadeiro inventor do Cálculo Diferencial". Contudo, Fermat não dispunha de notação apropriada e o conceito de limite não estava ainda claramente definido.
No séc.XVII, Leibniz algebriza o Cálculo Infinitesimal, introduzindo os conceitos de variável, constante e parâmetro, bem como a notação dx e dy para designar "a menor possível das diferenças em x e em y. Desta notação surge o nome do ramo da Matemática conhecido hoje como " Cálculo Diferencial ".
Assim, embora só no século XIX Cauchy introduzia formalmente o conceito de limite e o conceito de derivada, a partir do séc. XVII, com Leibniz e Newton, o Cálculo Diferencial torna-se um instrumento cada vez mais indispensável pela sua aplicabilidade aos mais diversos campos da Ciência.
Para estudar o conteúdo de Derivadas visite nossa seção Ensino superior.
http://www.somatematica.com.br/historia/derivadas.php
http://malbatahannerd.blogspot.com.br/2015/05/44-derivadas.html?spref=bl
Nenhum comentário:
Postar um comentário