Permutação de elementos repetidos deve seguir uma forma diferente da permutação, pois elementos repetidos permutam entre si. Para compreender como isso acontece veja o exemplo abaixo:
A permutação da palavra MATEMÁTICA ficaria da seguinte forma:
Sem levar em consideração as letras (elementos) repetidas, a permutação ficaria assim:
P10 = 10! = 3.628.800
Agora, como a palavra MATEMÁTICA possui elementos que repetem, como a letra A que repete 3 vezes, a letra T repete 2 vezes e a letra M repete 2 vezes, assim a permutação entre si dessas repetições seria 3! . 2! . 2!. Portanto, a permutação da palavra MATEMÁTICA será:
Portanto, com a palavra MATEMÁTICA podemos montar 151200 anagramas.
Seguindo esse raciocínio podemos concluir que, de uma maneira geral, a permutação com elementos repetidos é calculada utilizando a seguinte fórmula:
Dada a permutação de um conjunto com n elementos, alguns elementos repetem n1 vezes, n2 vezes e nnvezes. Então, a permutação é calculada:
Exemplo 1:
Quantos anagramas podem ser formados com a palavra MARAJOARA, aplicando a permutação teremos:
Portanto, com a palavra MARAJOARA podemos formar 7560 anagramas.
Exemplo 2:
Quantos anagramas podem ser formados com a palavra ITALIANA, aplicando a permutação teremos:
Portanto, com a palavra ITALIANA podemos formar 3360 anagramas.
Exemplo 3:
Quantos anagramas com a palavra BARREIRA podem ser formados, sendo que deverá começar com a letra B?
B ___ ___ ___ ___ ___ ___ ___
↓ ↓
1 P2,37
1 . P2,37 = 7! = 420
2! . 3!
Portanto, com a palavra BARREIRA podemos formar 420 anagramas.
Por Danielle de MIranda
Graduada em Matemática
Outro exemplo:
A palavra ARARAQUARA apresenta um total de 10 letras, sendo 5A, 3R, 1Q e 1U
5, 3
P 10
Onde: 10! 10.9.8.7.6.5!
3! = 3*2*1
P10 = 5!3! = 5! 3.2 = 10.9.8.7.6.5! = 5040 5! 3.2
Matemática Didática
Quantos anagramas podemos formar a partir das letras da palavra CURIÓ?
Como já vimos, a permutação simples de n elementos distintos é dada por Pn, então como na palavra CURIÓtemos 5 letras distintas, o número de anagramas seria igual a P5, ou seja, será igual a 5! que é igual a 120.
Quantos anagramas podemos formar a partir das letras da palavra ARARA?
Note que embora esta palavra também tenha cinco letras, agora temos apenas duas letras distintas. A letra A que ocorre 3 vezes e a letra R que ocorre 2 vezes. Como devemos proceder nesta situação?
Vimos no caso da palavra CURIÓ, que a permutação de cinco letras distintas resulta em 120 possibilidades.
Como na palavra ARARA a letra A ocorre três vezes, a permutação destas três letras A é P3 = 3! = 6, ou seja, se dividirmos 120 por 6 iremos obter 20 que é o número de permutações, já desconsiderando-se as permutações entre as três letras A.
O mesmo iremos fazer em relação à letra R, só que neste caso o número de permutações desta letra éP2 = 2! = 2, isto é, dividindo-se 20 por 2 temos como resultado 10, que é o número total de permutações das letras da palavra ARARA, sem considerarmos as permutações das letras A entre si, e das letras R também entre elas mesmas.
Permutação com Elementos Repetidos
A cada um dos agrupamentos que podemos formar com certo número de elementos, onde ao menos um deles ocorre mais de uma vez, tal que a diferença entre um agrupamento e outro se dê pela mudança de posição entre seus elementos, damos o nome de permutação com elementos repetidos.
Fórmula da Permutação com Elementos Repetidos
Se em um dado conjunto um elemento é repetido a vezes, outro elemento é repetido b vezes e assim sucessivamente, o número total de permutações que podemos obter é dada por:
A resolução do exemplo com o uso da fórmula é:
Exemplos
Como a palavra PARAR possui 5 letras, mas duas delas são repetidas duas vezes cada, na solução do exemplo vamos calcular P5(2, 2):
Portanto:
Neste caso de permutação com elementos repetidos temos um total de 10 bolas de quatro cores diferentes. Segundo a repetição das cores, devemos calcular P10(4, 3, 2):
Então:
Neste exemplo, número ímpares serão aqueles terminados em 3 ou 9.
No caso dos números terminados em 3 devemos calcular P5(2, 2), pois um dos dígitos três será utilizado na última posição e dos 5 dígitos restantes, teremos 2 ocorrências do próprio algarismo 3 e 2 ocorrências do 6:
Agora no caso dos números terminados em 9 devemos calcular P5(3, 2), pois o dígito 9 será utilizado na última posição e dos 5 dígitos que sobram, teremos 3 ocorrências do 3 e 2 ocorrências do dígito 6:
Como temos 30 números terminados em 3 e mais 10 terminados em 9, então no total temos 40 números ímpares.
Logo:
Nenhum comentário:
Postar um comentário