Pular para o conteúdo principal

ENEM - Princípio fundamental da contagem

Por Lucas Martins
O princípio fundamental da contagem nos diz que sempre devemos multiplicar os números de opções entre as escolhas que podemos fazer. Por exemplo, para montar um computador, temos 3 diferentes tipos de monitores, 4 tipos de teclados, 2 tipos de impressora e 3 tipos de “CPU”. Para saber o numero de diferentes possibilidades de computadores que podem ser montados com essas peças, somente multiplicamos as opções:

3 x 4 x 2 x 3 = 72
Então, têm-se 72 possibilidades de configurações diferentes.
Um problema que ocorre é quando aparece a palavra “ou”, como na questão:
Quantos pratos diferentes podem ser solicitados por um cliente de restaurante, tendo disponível 3 tipos de arroz, 2 defeijão, 3 de macarrão, 2 tipos de cervejas e 3 tipos de refrigerante, sendo que o cliente não pode pedir cerveja e refrigerante ao mesmo tempo, e que ele obrigatóriamente tenha de escolher uma opção de cada alimento?
A resolução é simples: 3 x 2 x 3 = 18 , somente pela comida. Como o cliente não pode pedir cerveja e refrigerantes juntos, não podemos multiplicar as opções de refrigerante pelas opções de cerveja. O que devemos fazer aqui é apenas somar essas possibilidades:
(3 x 2 x 3) x (2 + 3) = 90
Resposta para o problema: existem 90 possibilidades de pratos que podem ser montados com as comidas e bebidas disponíveis.
Outro exemplo:
No sistema brasileiro de placas de carro, cada placa é formada por três letras e quatro algarismos. Quantas placas onde o número formado pelos algarismos seja par, podem ser formadas?
Primeiro, temos de saber que existem 26 letras. Segundo, para que o numero formado seja par, teremos de limitar o ultimo algarismo à um numero par. Depois, basta multiplicar.

26 x 26 x 26 = 17.576 -> parte das letras
10 x 10 x 10 x 5 = 5.000 -> parte dos algarismos, note que na última casa temos apenas 5 possibilidades, pois queremos um número par (0 , 2 , 4 , 6 , 8).

Agora é só multiplicar as partes: 17.576 x 5.000 = 87.880.000
Resposta para a questão: existem 87.880.000 placas onde a parte dos algarismos formem um número par.



Exemplos

Quantos são os números naturais de dois algarismos que são múltiplos de 5?
Como o zero à esquerda de um número não é significativo, para que tenhamos um número natural com dois algarismos ele deve começar com um dígito de 1 a 9, temos portanto 9 possibilidades.
Para que o número seja um múltiplo de 5, o mesmo deve terminar em 0 ou 5, portanto temos apenas 2possibilidades.
A multiplicação de 9 por 2 nos dará o resultado desejado.
Logo:
São 18 os números naturais de dois algarismos que são múltiplos de 5.

Eu possuo 4 pares de sapatos e 10 pares de meias. De quantas maneiras poderei me calçar utilizando um par de meias e um de sapatos?
Pelo princípio fundamental da contagem temos que multiplicar 4, que é o número de elementos do primeiro conjunto, por 10 que corresponde ao número de elementos do segundo conjunto.
Portanto:
RespostaPoderei me calçar de 40 maneiras diferentes.

De quantas formas podemos dispor as letras da palavra FLUOR de sorte que a última letra seja sempre a letra R?
Para a última letra, segundo o enunciado temos apenas uma possibilidade que é a letra R.
Para a primeira, segunda, terceira e quarta letras temos respectivamente 432 e 1 possibilidades. Assim temos:
Note que este exemplo é semelhante ao caso dos livros, explicado no início da página, só que neste caso teríamos mais um livro, digamos de ciências, que sempre seria colocado na pilha por último.
Podemos dispor as letras da palavra FLUOR de 24 formas diferentes, tal que a última letra seja sempre a letra R.

Quantos números naturais com 3 algarismos podemos formar que não comecem com 16, nem com 17?
Neste exemplo iremos fazer o cálculo em duas partes. Primeiro iremos calcular quantos são os números com três algarismos.
Como neste caso na primeira posição não podemos ter o dígito zero, o número de possibilidades para cada posição é respectivamente: 910 e 10.
Portanto temos 900 números naturais com três dígitos.
Agora vamos calcular quantos deles começam com 16 ou 17.
Para a primeira posição temos apenas uma possibilidade, o dígito 1. Para a segunda temos 2, pois servem tanto o dígito 6, quanto o 7.
Para a terceira e última posição temos todos os dígitos possíveis, ou seja, 10 possibilidades.
Multiplicando tudo temos 20.
Logo, subtraindo 20 de 900 obtemos 880.
Existem 880 números naturais nestas condições.

São quantos os números ímpares com três algarismos, que não possuem dígitos repetidos e que de trás para frente também são ímpares?
Os números devem ser ímpares, temos então 5 possibilidades para o último algarismo.
A história do "de trás para frente", em outras palavras quer dizer que o primeiro algarismo também é ímpar. Como um dígito ímpar já foi utilizado na última posição, temos então apenas 4 disponíveis para a primeira posição.
Para o dígito central temos apenas 8 possibilidades, pois dois dígitos ímpares já foram utilizados.
Multiplicando 4 por 8 e por 5 obtemos 160.
Assim sendo:
RespostaSão 160 os números ímpares que satisfazem a todas estas condições.

Postagens mais visitadas deste blog

Canções para TFM

DEMÔNIOS CAMUFLADOS DEMÔNIOS CAMUFLADOS VÃO SAIR DA ESCURIDÃO,
SENTINELA ENSANGUENTADO VAI ROLANDO PELO CHÃO,
E PERGUNTEM DE ONDE VENHO, VENHO DA ESCURIDÃO,
TRAGO A MORTE, O DESESPERO E A TOTAL DESTRUIÇÃO.
ARMADILHAS CAMUFLADAS, ACIONADORES DE TRAÇÃO,
QUEM VIER ATRAS DE MIM SÓ VAI OUVIR A EXPLOSÃO(CABUM)
SANGUE FRIO EM MINHAS VEIAS CONGELOU MEU CORAÇÃO
NÓS GOSTAMOS DE EXPLOSIVOS NOSSO LEMA É VIBRAÇÃO.
QUEM ÉS TU? QUEM ÉS TU?
QUE DESCE DO CÉU!
COM ASAS DE PRATA POR SOBE O BRASIL!
GUERREIRO ALADO, QUE NÃO SENTE DOR!
PARAQUEDISTA, COMANF, MERGULHADOR!
A SUA MISSÃO É DESTRUIR
A TROPA INIMIGA QUE TENTA INVADIR

CORRIDINHA MIXURUCA CORRIDINHA MIXURUCA,
QUE NÃO DÁ NEM PARA CANÇAR.
NESSE PASSO, NESSE PASSO,
VOLTA AO MUNDO EU VOU DAR.
NESSE PASSO, NESSE PASSO
TODOS JUNTOS VÃO CHEGAR.
E SE ALGUÉM NÃO AGUENTAR,
EU VOU TER QUE ARRASTAR.
E SE O ARRASTO ME MATAR, PODES CRER TU VAI FICA
VAI FICAR NA MÃO DE OUTRO – ATÉ EU ME RECUPERAR.
POIS NESSE PASSO, NESSE PASSO,
MESMO MORTO VOU TE BUSCAR.




SALTITANDO, SALTI…

Canções Militares para o TFM.

Essas canções são usadas durante o Treinamento Físico Militar nas Forças Armadas, das Polícias Militares e Corpos de Bombeiros Militares.
Demônios Camuflados Demônios camuflados vão sair da escuridão,
sentinela ensanguentado vai rolando pelo chão,
e perguntem de onde venho, venho da escuridão,
trago a morte, o desespero e a total destruição.
Armadilhas camufladas, acionadores de tração,
Quem vier atras de mim só vai ouvir a explosão(Cabum)
Sangue frio em minhas veias congelou meu coração
Nós gostamos de explosivos nosso lema é vibração.
Quem és Tu? Quem és tu?
Que desce do céu!
Com asas de prata por sobe o Brasil!
Guerreiro alado, que não sente dor!
Paraquedista, Comanf, Mergulhador!
A sua missão é destruir
A tropa inimiga que tenta invadir

Corridinha Mixuruca Corridinha mixuruca,
que não dá nem para cançar.
Nesse passo, nesse passo,
Volta ao mundo eu vou dar.
Nesse passo, nesse passo
Todos juntos vão chegar.
E se alguém não aguentar,
Eu vou ter que arrastar.
E se o arrasto me matar, podes c…

Termodinâmica

Termodinâmica