Inequação Produto
Vamos estabelecer as seguintes funções: y1 = 2x + 6 e y2 = – 3x + 12.
Determinando a raiz da função (y = 0) e a posição da reta (a > 0 crescente e a < 0 decrescente).
y1 = 2x + 6
2x + 6 = 0
2x = – 6
x = –3
y2 = – 3x + 12
–3x + 12 = 0
–3x = –12
x = 4
Verificando o sinal da inequação produto (2x + 6)*(– 3x + 12) > 0. Observe que a inequação produto exige a seguinte condição: os possíveis valores devem ser maiores que zero, isto é, positivo.
Através do esquema que demonstra os sinais da inequação produto y1*y2, podemos chegar à seguinte conclusão quanto aos valores de x:
x Є R / –3 < x < 4
Inequação quociente
Na resolução da inequação quociente utilizamos os mesmos recursos da inequação produto, o que difere é que, ao calcularmos a função do denominador, precisamos adotar valores maiores ou menores que zero e nunca igual a zero. Observe a resolução da seguinte inequação quociente:
Resolver as funções y1 = x + 1 e y2 = 2x – 1, determinando a raiz da função (y = 0) e a posição da reta (a > 0 crescente e a < 0 decrescente).
y1 = x + 1
x + 1 = 0
x = –1
y2 = 2x – 1
2x – 1 = 0
2x = 1
x = 1/2
Com base no jogo de sinal concluímos que x assume os seguintes valores na inequação quociente:
x Є R / –1 ≤ x < 1/2
Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola
Nenhum comentário:
Postar um comentário